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In his paper “ÉLECTRICITÉ – Sur la dynamique de l’electron” from June 5th, 1905,
Henri Poincaré defined the Lorentz transformations and stated that these form a group [1].
This was a few years after the fundamental papers by H. A. Lorentz [2], W. Voigt [3]
and J. J. Larmor [4] and almost at the same time as A. Einstein’s paper [5]. A year
later, H. Poincare formulated the principle of relativity, introduced the concept of the
Lorentz group Lor1,3 and postulated that the laws of Nature must be covariant under
Lorentz transformations [6]. It was the mathematician Hermann Minkowski who traced
and extended Poincaré’s lines of thought in 1908, introducing the 4-dimensional space-time
continuum and its invariant metric [7]. As the result of the work of two mathematicians –
H. Poincaré and H. Minkowski – the Lorentz group Lor1,3 is the relativistic symmetry group
of space-time M1,3. The worldline of a particle in the space-time manifold is classified by
the value of

τP · τP ,

where τP is the tangent vector at the point P . In the case of massive particles the tangent
vector τP is timelike, τP · τP > 0. According to E. P. Wigner the internal symmetry of
a massive particle is determined by the little subgroup SO3 of Lor1,3 [8]. The subgroup
SO3 ⊂ Lor1,3 of rotations is the maximal simple and compact subgroup of Lor1,3. On the
other hand, the worldline of massless particles has a zero tangent vector at each point P ,
i.e. τP τP = 0. According to the same principle, the intrinsic symmetry group for a non-
massive particle must be the maximal, non-simple and non-compact subgroup of Lor1,3,
i.e. the maximal solvable subgroup or Borel subgroup Bor1,3 ⊂ Lor1,3. In the dual space
the Borel subgroup is associated with the equation

Λ
◦
p = λ

◦
p,

◦
p = (ε, 0, 0, 1), ε = ±1 and λ > 0.

It is clear that Wigner’s little group E2 is a subgroup of the Borel subgroup, E2 ⊂ Bor1,3.
As a solvable group, Bor1,3 has the structure of a semidirect product

Bor1,3 = T2 ⋊ Tor1,3,

where T2 is the nilpotent normal subgroup of Bor1,3 and Tor1,3 is the maximal torus of
Bor1,3 (and Lor1,3). Using the eigenvalue problem of the adjoint representation one obtains
a decomposition of the Lie algebra bor1,3 given by

bor1,3 = sol2(e) ⊞ sol2(f).

Here ⊞ is the Kronecker sum and

sol2(e) = Re ⋊Rh+ = R⋊R = aff1,

sol2(f) = Rf ⋊Rh− = R⋊R = aff1 .
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The elements h, e, f consitute the standard basis of sl2, h± = 1

2
(1 ± h), and ⋊ is the

semidirect sum. Therefore, the Borel algebra bor1,3 is the Kronecker sum of two affine
algebras. Since sol2 is solvable, it determines a single eigenfunction. As a consequence of
this, bor1,3 determines two eigenfunctions as the two helicity states for the photon. The
special case of the photon (the representation (1

2
, 1

2
)) provides the classification of zero-mass

particles. This leads us to Weinberg’s ansatz:

1. If a massless particle is equal to it’s antiparticle, it is decribed by the irreducible
representation (k, k) of the proper Lorentz group.

2. If a massless particle is not equal to it’s antiparticle, the particle is described by the
irreducible representation (k, 0) of the proper Lorentz group, and the antiparticle is
described by the irreducible representation (0, k) of the proper Lorentz group.

Therefore, for the vector case (1

2
, 1

2
) (the photon) there are two helicity states, while for

the repesentation (1

2
, 0) (the Pauli neutrino) there is only one helicity state. Accordingly,

for the representation (1, 1) (a particle of helicity 2) there are four helicity states, two of
them being right-handed and two left-handed.

It is useful to note that the classification of massless particles given by Weinberg’s
ansatz is determined by the algebraic structure (the Borel subgroup) of the proper Lorentz
group, i.e. by the symmetry group of Minkowski’s space-time.

To conclude, there are two schemes of equal value resulting from the proper Lorentz
group:

• the massive case p2 = m2 > 0, p ∼
◦
p = (m,~0) ∈ M1,3 where Lor1,3 contains the

stability or little group SO3 of the point
◦
p, the maximal compact simple subroup

homeomorphic to the real projective space P 3(R). Y3 = Lor1,3 / SO3 describes a
noncompact hyperboloid;

• the massless case k2 = 0, k ∼
◦

k = (1, 0, 0, 1) ∈ M1,3 where Lor1,3 contains the little
group Bor1,3 of k or the stabilizer of the straight line R+k, the maximal noncompact
solvable subgroup. Lor1,3 / Bor1,3 = SO3 / SO2 is homeomorphic to the projective
variety P 1(C) = S2.
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