
‘Like classical Thermodynamics before Boltzmann’. Why
did Einstein Compare Relativity Theory with

Thermodynamics ?
-

Towards the end of 1919, in a brief article for the Times of London, Einstein (1919b)
famously declared relativity theory to be a ‘principle theory,’ like thermodynamics, rather than a
‘constructive theory,’ like the kinetic theory of gases. Over the last decade, this distinction has
attracted considerable interest in the literature, originating a vast and still living philosophical
debate on the foundation of spacetime theories (Brown, 2005; Janssen, 2009; Norton, 2008), and,
to a lesser extent, on the foundation of quantum mechanics (Bub, 2000). Historically oriented
scholarship has attempted to clarify Einstein’s principle/constructive theories opposition (Howard,
2005), showing how it was deeply rooted in the 19th-century physics emphasis on the role of
general principles in physics (Howard, 2007; cf. also Stachel, 2000). At the turn of the century,
H. A. Lorentz (Frisch, 2005) and H .Poincaré presented the opposition between the ‘physics of
principles’ and the ‘physics of models’ as commonplace (Darrigol, 1995). In a similar vein, in the
early 20th-century, A. Sommerfeld opposed a ‘physics of problems,’ a style of doing physics based
on concrete puzzle solving, to the ‘practice of principles’ defended by M. Planck (Seth, 2010).

In spite of the recent spike of interest, a systematic account of Einstein’s principle/constructive
theory distinction is missing. Most of all, the rationale behind Einstein’s compare relativity theory
with thermodynamics has been, in my opinion, misunderstood. In particular, it is argued, the
comparison not have much to do with the question of the ontological status of space-time, as it is
usually claimed in recent literature (Brown, 2005; Janssen, 2009). This paper, by reconstructing
in some details both the prehistory and the aftermath of the Einstein’s 1919 article, aims to show
that both conclusions are, to a certain extent, misleading.

Einstein started to compare relativity theory to ‘thermodynamics before Boltzmann,’ rather
in passing, on two occasions, between 1907 (Einstein, 1907) and the beginning of 1908 (Einstein
to Sommerfeld, 14-01-1908), to answer to a rather specific objection. The comparison was meant
to defend the derivation of the velocity dependence of the mass the electron presented in the last
section of Einstein’s 1905 paper. Even physicists who would soon give fundamental contributions
to relativity theory were puzzled. A. Sommerfeld, P. Ehrenfest (1907), and M. Born (1909a,b,c)
insisted for several years, in private correspondence and published writings, that Einstein could
not get away without making some assumptions about the shape, the charge distribution and the
nature of the mass of the electron. By contrast, M. Planck (1906), H. Minkowski (1907a,b), and
Laue (1911a,b) embraced Einstein’s strategy of setting up a relativistic mechanics of structureless
point particles, by imposing the requirement of Lorentz invariance on an existing law valid for
slow velocity.

When the dispute was long over, Einstein started to systematize (Einstein, 1914) his occasional
methodological reflections (Einstein, 1919a). Einstein distinguished between: (a) constructive
theories, which synthetically construct hypothetical models (Bilder) compatible with the current
laws of nature (mechanical model of a gas, an electromagnetic model of the electron) (b) ‘principle
theories,’ which search analytically for empirically motivated and mathematically formulated
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requirements that such laws (of mechanics, electrodynamics, etc.) have to satisfy. Relativity
theory, like thermodynamics, belongs to the latter category. The constructive/principle theory
distinction has become somehow iconic, but, as the paper attempts to show, somehow obscures
the fundamental point.

Only towards the end of his life, getting back with his memories to the early years of relativity,
Einstein revealed more explicitly the rationale for building special relativity following the analogy
with thermodynamics. As Einstein explained to W.F.G. Swann, when he was setting up the
theory, he attempted to ground it on a foundation that “from the standpoint of our experience,”
was “better justified than any particular structural laws, e.g. Maxwell’s equations” or any other
constructive theory that would take its place (Einstein to Swann, 24-01-1942). For this reason
in special relativity, “nothing is stated about the structural laws of nature other than the fact
that they should be Lorentz-invariant” (Einstein to Swann, 24-01-1942). As a consequence of
Planck’s radiation law, Einstein suspected that the structural or fundamental laws of nature that
where taken for granted at that time, not only Newtonian mechanics, but also vacuum Maxwell’s
electrodynamics, could not be exactly valid (Einstein, 1946). Einstein might have attempted
to account for the failure of the ether-drift experiments by modifying classical electrodynamics
directly, in particular by embracing an emission theory of light. When these “constructive
attempts” (Einstein, 1946) failed, he considered preferable to follow the “logical equivalent”
of the strategy used in thermodynamics. (Einstein to Amiet, 17-12-1947). Thermodynamics
could justify its two principles without referring to Newtonian mechanics, but by relying on the
universally accepted empirical fact that the construction perpetuum mobile of first or second
kind. Similarly, in Einstein’s approach, the Lorentz transformations are “defined independently
of Maxwell equations” (Einstein, 1950, 14), they are derived from empirical generalizations
summarized in the two famous postulates. For this reason they can be used as an “heuristic
principle valid far beyond the range of the applicability or even validity of the equations themselves”
(Einstein, 1950, 14).

As Einstein explained in an often-quoted letter to von Laue, special relativity was “based
essentially only on the constant c, and not on the presupposition of the reality of the Maxwell
field” (Einstein to Laue, 17-01-1952). In 1905—Einstein conceded to his biographer C. Seelig a
few months—special relativity was, so to say, in the air. “Lorentz had already recognized that
the transformations named after him are essential for the analysis of Maxwell equations, and
Poincaré deepened this insight still further”. The peculiarity of his approach, Einstein explained,
consisted in the “the realization that the Lorentz transformation transcends its connection with
Maxwell’s equations” and are elevated to “a general condition for any physical theory” (Einstein
to Seelig, 19-02-1955).

The importance of this letter was first emphasized by Born, just after Einstein’s death (Born,
1956). The letter, according to Born reveals that in Einstein’s view, “the principle of relativity was
more general and should be founded on considerations which would be still valid when Maxwell
equations had to be discarded”, that is replaced by a theory that would account for the discrete
structure of radiation (Born, 1956, 104). The difference between Einstein’s approach and Lorentz-
Poincaré approach lies precisely here, as Wolfgang Pauli pointed by commenting on the very
same letter. Einstein sensed that Maxwell’s electrodynamics could not be generally correct. “He,
therefore, formulated the invariance of the laws of nature with respect to Lorentz transformations
as a general postulate which is more reliable than Maxwell equations” (Pauli, 1959, 241; tr. 1994,
119). The paper will conclude that these few remarks unwittingly express the rationale behind
Einstein’s comparison between special relativity and thermodynamics. Differently to what it is
usually claimed, Einstein’s thermodynamics/relativity theory analogy was not meant to emphasize
that relativity theory is ultimately a byproduct of some deeper level theory constructive analogous
to the kinetic theory of gases. On the contrary, it was meant to show that the relativity principle,
like the two principles of thermodynamics, is a constraint that we impose on such theories, but
whose validity does not depend on any of them (Lange, 2001, 2007, 2009).
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DYNAMICS AND CHRONOGEOMETRIC STRUCTURE IN SPACETIME THEORIES 
 

Harvey Brown’s celebrated Physical Relativity (2005) introduced a dynamical-constructive inter-
pretation of relativity theory. A main claim in this interpretation is that Lorentz invariance has a 
more fundamental place in special relativity than Minkowski spacetime structure. Actually, Brown 
claims, the former explains the latter. 

Brown finds historical and conceptual support in the approach in electrodynamics undertaken by 
late 19th century physicists such as Larmor, Fitzgerald and Lorentz. They allegedly provided a dy-
namical foundation—crowned in Lorentz’s model of the electron in his ether theory—for physical 
effects which today we characterize as paradigmatically relativistic, e.g., clock-retardation and 
length-contraction. The 19th century explanation of these effects is supposed to be given by the (Lo-
rentz invariant) laws governing the interaction between matter and the ether. In simple terms, the 
“relativistic” behavior of physical bodies results from the way they are made, not from the structure 
of an embedding spacetime. Brown does not propose a return to ether physics, of course, but he 
argues for an interpretation of relativity theory along these lines—where the ultimate dynamical 
foundation and explanation of Minkowski spacetime structure is provided by a (Lorentz invariant) 
quantum theory of matter. 

I will contest Brown’s interpretation and propose a more nuanced view concerning the relation 
between dynamics and spacetime structure. I will look back to the 19th century too, but this time to 
arguments concerning the epistemology of geometry introduced by Helmholtz (1977) and Poincaré 
(2001).  

Helmholtz’s main insight was that for the question of the geometric structure of physical space to 
make sense at all, dynamical considerations must be involved from the outset. He stated that if the 
notions of congruence and rigidity are not previously defined and operationalized—an issue that 
involves dynamical laws governing physical bodies—the measurements that can tell about the geo-
metric structure of physical space are neither defined nor possible. In other words, a geometric struc-
ture cannot even refer to the physical world unless dynamical principles define notions like congru-
ence and rigidity. Only once this is accomplished, measurements of spatial structure are meaningful 
and possible. 

Now, a crucial point is that the converse is also true, i.e., dynamics makes physical sense only on 
a geometric structure background. This important insight is implicit in Helmholtz’s work: that is 
why measurements performed with rigid bodies can be taken as empirical evidence for a certain 
geometric structure in the first place. If dynamics—and hence the corresponding definition and op-
erationalization of rigidity and congruence—were geometrically neutral, those measurements 
would be idle with respect to the geometric structure of physical space.  

This point can be clearly seen if we consider Poincaré’s argument for the conventionality of ge-
ometry, in the context of the predictive equivalence and rivalry between Lorentz’s ether theory and 
special relativity. We can take this historical episode in physics as an instance of Poincaré’s parable 
of a single world that can be correctly described by two incompatible (chrono)geometric structures. 
The mathematical form of the dynamical laws in both theories is exactly the same, but they have a 
different meaning. For example, in the ether theory, ∆𝑥𝑥′ = ∆𝑥𝑥 𝛾𝛾⁄ , where 𝛾𝛾 = 1 �1− 𝑣𝑣2 𝑐𝑐2⁄⁄ , refers to 
the longitudinal contraction of an object that moves with respect to the ether with velocity 𝑣𝑣; whereas 
in special relativity the same formula refers to the different measurements of the length of the same 
object in two frames that move with respect to each other with velocity ±𝑣𝑣. For this difference in 
meaning to be possible at all, ∆𝑥𝑥′ = ∆𝑥𝑥 𝛾𝛾⁄  must be setup on different chronogeometric structures. For 



the ether theory to be able to pick a privileged ether-rest frame, Newtonian spacetime must be the 
chronogeometric background for the law. In turn, in special relativity the formula is about kinemat-
ics in different frames since the chronogeometric structure on which it is defined is Minkowski 
spacetime. On the other hand, if the law were chronogeometrically neutral we could not assign it 
any of the two meanings—or any physical meaning at all. 

We can thus draw a Helmholtzian conclusion. If the chronogeometric structures we call 
spacetimes are to have a physical meaning at all, dynamical principles that operationalize them in 
terms of the behavior of physical objects are necessary1. On the other hand, if the mathematical equa-
tions we call dynamical laws are to have a physical meaning at all, they must be setup on a chrono-
geometric structure background. Borrowing a Kantian expression, spacetime structure without dy-
namics is empty, and dynamics without spacetime structure is blind. Hence, Brown’s thesis that 
Lorentz invariance explains and is more fundamental than Minkowski spacetime structure cannot 
be right. The thesis here presented is a generalization of the argument in (Acuña 2016): there it is 
argued that in special relativity Minkowski spacetime and Lorentz invariance are like the two sides 
of a single coin, here I argue that the same relation holds between spacetime structure and dynamics 
in all spacetime theories. Actually, the approach of 19th century physicists is not substantially differ-
ent from Einstein’s in this respect: the dynamical “ether laws” that explain length-contraction and 
clock-retardation are as chronogeometrically laden as special relativistic laws. 

This thesis can provide further insight regarding the discussion about the ontology of spacetime. 
If chronogeometric structure has no physical meaning when disentangled from dynamics, and if it 
plays the role of making dynamical laws intelligible, the view that spacetime represents an entity—
whatever its mode of existence may be—becomes unmotivated. On the other hand, if dynamical 
laws are not (kinematically) intelligible unless they are setup on a chronogeometric background, it 
is not possible to conceive spatiotemporal relations between bodies prior to the introduction of 
chronogeometric structure—so that the relationist thesis gets challenged as well. I will then suggest 
that the thesis I am introducing promises a dissolution of the substantivalism/relationism debate. 
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Extended Abstract   

Kant, Einstein, Reichenbach 

                    Fedde Benedictus 

My aim in this talk is to analyse the relation between Einstein’s postulate of 
relativity and Kant’s view on a priori knowledge, in the light of Reichenbach’s take on this 
relation. It is well known that Einstein was inspired by Kant. Although the precise role of 
Kant’s philosophy in Einstein’s thought is an issue of an ongoing debate, within the first 
generation of philosophers who tried to gauge the consequences of Einstein’s theories for 
the philosophy of science – Reichenbach, Cassirer and Carnap, among others - there were 
already opposing views as to the relation between Kant’s philosophy and Einstein’s physics. 
In this talk I will focus on Reichenbach’s interpretation of that relation.  

Reichenbach famously distinguished between two different aspects of Kant’s 
concept of the a priori – the apodictic and the constitutive a priori. According to 
Reichenbach we should do away with the apodictic aspect, because it goes against the 
foundations of empirical science. In his habilitation thesis “The Theory of Relativity and A 
Priori Knowledge” (1920) Reichenbach sees it as his task to discover what remains of the 
Kantian a priori in the face of Einstein’s theories. In the work Reichenbach formulates his 
idea of the relativised a priori – making it precise how an element of knowledge can be 
constitutive without being apodictic. In my talk I will show that Reichenbach’s idea about 
the relativised a priori is closely related to the idea of the functional a priori of Arthur 
Pap. Pap’s a priori does not refer to propositions that are a priori in the sense of being 
independent of observation, but rather a priori in the sense of being a precondition for a 
specific theoretical context. (for example, in the context of Newton’s physics it is a priori 
assumed that forces behave as vectors. This assumption, although a priori, has proven 
useful in aeons of physics – it is very a posteriori indeed) 

After characterising the different kinds of a priori of Kant, Reichenbach and Pap, 
we revisit the relation that we began with: that between Einstein’s physics and Kant’s a 
priorism. In what sense should we regard Einstein’s relativity postulate as a priori? 
Certainly not in Kant’s sense, of the synthetic a priori. Is there a sense of the a priori 
which we should apply to Einstein’s postulate? This and related questions I will attempt to 
answer in in my talk.  

For a draft version of a paper on the relation between Einstein’s relativity and Kant’s a 
priorism, please see the following: 
https://feddebenedictus.com/2018/03/20/einstein-kant-synthetic-relativity/ 

Diff constitutive/conditional 
Diff factual/synthetic

https://feddebenedictus.com/2018/03/20/einstein-kant-synthetic-relativity/


Too distant worlds. Spacetime Structural Realism and Physicality. [Extended abstract] 

Damian Luty1 

 The goal of my presentation is to evaluate spacetime structural realism (SSR)) in the context of 

problems about classifying certain spacetime models as physical or unphysical. I claim that those 

problems lead to serious doubts about „realism” in spacetime structural realism.  

 SSR, if modelled after ontic structural realism (OSR) or moderate ontic structural realism 

(MOSR) should be considered, I think, as a strong realistic position towards spacetime. By „strong 

realistic position” I mean such a position in which one holds metaphysical, epistemological and semantic 

beliefs towards entities posited in the domain of discourse of a given scientific theory. Ontologically 

oriented structuralists seem to take the thesis of epistemological realism for granted; they sometimes try 

to ground their position in certain semantics (e.g. partial isomorphisms approach). The fuss is, of course, 

about the thesis of metaphysical realism -  how to cash it out in structural terms, especially when one 

has in mind interpretative applications to certain theories, like general theory of relativity (GTR)? I claim 

that even if all three thesis are non-standard or somehow revisionistic, when all of them are hold jointly 

in one way or another, then we are dealing with strong realism. For some, surely, metaphysical realism 

alone is far too strong; but I bracket naive realism here. 

 What is the metaphysical thesis of SSR, what is the nature of spacetime according to SSR-ist? 

Surely, spacetime is treated here as a real existent. If SSR is modelled strictly after OSR then spacetime, 

metaphysically, has no parts, for only spacetime relations invariant under relevant transformations are 

considered ontologically real. Individuals – spacetime points – are banned from SSR-ists ontology. 

Structure is taken to be a set of relations. This version of SSR seems not to be promising. 

 SSR modelled after MOSR treats spacetime points and spacetime structure encoded in the 

metric tensor field as ontologically on a par, with the addition that spacetime points have no primitive 

individuality; they gain individuality via the metric tensor. However, this leads to the concept of 

discernibility only via spacetime relations. Admitting individuals in SSR while formulating criteria of 

identity in relational terms means that in case of spacetime in GTR the role of identification can only be 

played by spacetime curvature. This criterion is valid only in generally non-symmetric spacetimes. The 

argument called „the abysmal embarassment for spacetime structuralism” points out that in highly 

symmetric, cosmic spacetimes (with Robertson-Walker metric) there is no way to discern spacetime 

points and SSR-ist is forced into accepting that there is only one point in the universe. This is a very 
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uncomfortable result: to avoid this conclusion one must resort to arbitral admittment of numerical 

distinctivess or toy with the notion of discernibility. 

 Now, the usual response to problems generated by symmetries in spacetime is to discard such 

examples with highly symmetrical spacetimes, deeming them unphysical.  But this price seems too high. 

Should we discard Minkowski spacetime  or the Schwarschild solution, and claim that those are 

unphysical? This would seem to be an instrumentalist ploy or a sort of selectivism. I think that this 

doesn’t suit any realist well. 

 Given that in some forms of SSR one must reduce the number of physically sound spacetime 

models, it is reasonable to say that this lack of trust towards GTR makes SSR not that realistic at all. If 

we accept the strong realist reading of SSR, then in SSR there is an inconsistency regarding how to 

formulate (approximatly) true statements about physical facts dealed with in certain models generated 

from GTR. If we accept that SSR is only a metaphysical thesis then solutions to problems concerning 

symmetric spacetimes are poorly motivated.  
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ALGORITHMS, THEORIES AND ONTOLOGY; SPACETIME FROM

THE PERSPECTIVE OF STATISTICAL MECHANICS

G. N. ORD

Abstract. Relativity and quantum mechanics both claim impressive empirical accuracy
and are both considered to be fundamental theories, despite being based on very different
paradigms. From the perspective of classical statistical mechanics, there are good reasons
to suggest that quantum mechanics is more algorithm than theory. The addition of
a discrete signal to worldlines in special relativity reveals the task that the quantum
algorithm accomplishes. It also displays the reason that a linear superposition principle
applies to a ‘square root’ of probability density functions. In this view the quantum
algorithm is directly linked to spacetime and would not occur in a Newtonian world
where space and time are independent. It arises as a consequence of Minkowski’s merger
of space and time under the additional condition that worldlines have an intrinsic scale
at the Compton length.

Department of Mathematics, Ryerson University, Toronto, Ontario, Canada
E-mail address: gord@ryerson.ca
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Abstract for 5th International Conference on the Nature and Ontology of 

Spacetime 2018 

Uri Ben-Ya'acov 

 

Title : Proper-time measurement in accelerated relativistic systems 

Abstract : 

The proposed lecture emerged from a work which addresses the question of Whether it is possible 

to assign the concept of common proper-time to complex, spatially extended, relativistic systems as 

a whole; in particular, with the wish to use this common proper-time for the age of the system. 

The process of time measurement uses ideal clocks – inertial point-like clocks – and requires 

simultaneity between events in the clock system and the measured system. Therefore, in a basic 

time measurement the clock must be at rest relative to the system in which the measured process 

occurs.  

For a point-like body, the proper-time measurement is identical with the reading of a clock 

momentarily at rest with the body : An un-accelerated point particle may always be found at rest 

relative to some inertial frame, so the proper-time measurement for it is identical to the clock 

reading in that frame. Otherwise, if accelerated, at each and every point along the body's journey in 

space-time a different ideal clock must be used, relative to which the body is momentarily at rest. 

Then the proper-time lapse of the particle moving on the world-line   ,t r t  relative to some 

inertial reference frame is the integral 2 2 21dt dr v dt       along the world-line. Since 

this is the only time measurement available for that particle, it must necessarily serve as the 

measure for its age. 

Real physical systems are not point-like but composite, spatially extended. Even if their constituents 

may be regarded point-like, these move on different world-lines, each with its own proper-time 

lapse.  

Comparing the proper-time lapses at two different points of the system, say A and B, between any 

two states of motion, requires using some kind of simultaneity at any of the two states. Since 

simultaneity is frame dependent and not preserved by Lorentz transformations, much care has to be 

taken at this point. If the system is inertial there is just one (inertial) rest frame that accompanies the 

system through its space-time journey, and the correct measurement of proper-time is relative to 

this rest frame. But if the system accelerates then we must identify a momentary inertial rest frame 

common to A and B in the initial state, and similarly for the final state, so as to mimic the proper-

time measurement for an inertial system. 

Therefore, if we want to be able to compare the proper-time lapses at A and B at any stage of the 

system's journey, then it is required that a momentary inertial rest frame common to A and B must 

be found at each stage. If A and B are arbitrary points within the system then it implies that the 

whole system must be moving rigidly. Rectilinear rigid motion is possible for arbitrary (also time-

dependent) accelerations (taking into account necessary differential accelerations between different 



points), thus making it possible to use rigidly accelerated extended systems to model comparative 

proper-time measurement. 

Since proper-times are Lorentz invariant quantities they should be treated in a Lorentz covariant 

manner. Linear relativistic rigid motion with general (not-necessarily constant) accelerations is 

discussed Lorentz-covariantly, allowing to relate accelerations, velocities and proper-times of 

arbitrarily different points along the moving body. Differential ageing is computed, found to be 

proportional to the proper spatial distance between the two points and to the rapidity difference 

between initial to final states.  

Once instantaneous simultaneity is determined, the clocks at A and B must be synchronized in some 

way. This is done using light signals transmitted between the clocks, and the effect of the 

acceleration on the synchronization is discussed. 

Proper comparison of the proper-time lapses at two points of an accelerating system is thus 

uniquely determined, Lorentz-covariantly, for rectilinear relativistic rigid motion, which may then 

serve to model comparative proper-time measurement in accelerated relativistic systems. 

In particular, this model may be used to consider ideal vs. physical clocks: 

The idea of a point-like clock is fundamental for the concept of space-time continuum. It is 

necessary in order to define a time-like axis. An inertial reference frame in Minkowski space-time 

consists of point-like clocks moving on parallel time-like geodesics. But point-like clocks are 

idealizations. Real clocks are composite systems, consisting of many points. If the clock is inertial 

then all its constituents measure the time equally, which is also the rate that time is measured by the 

clock. But if the clock accelerates then different constituents of it, moving on different world-lines, 

may have different proper-time rates. Thus the question arises, How does this fit with the clock 

being itself a timekeeping device? Or, in other words, What is the relation between the intrinsic 

time-unit of the clock and external proper-time measurement ? A discussion of these issues will 

also be included, as time allows. 

Finally, it is important to emphasize that incorrect application of simultaneity to comparative time 

measurement in accelerated systems (partly due to lack of using Lorentz covariance) leads to wrong 

conclusions and appearance of so-called `paradoxes'. This will be illustrated with two examples, 

Bell's spaceships `paradox' and Boughn's `identically accelerated twins'. 
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Tomasz Placek

Tenses modally introduced:  a reductio argument?

There is a conflict between manifest time and time of physics, as structures 
needed for manifest time cannot exist in space-times of physics. The main 
elements of the manifest time are (1) a tripartite division of the world into the 
past,  the present (now), and the future, (2) a continuous succession  of the 
nows, and (3) an ontological difference between the fixed (settled) past and  
present,  and the open future.

A little explored road to introduce relativistic-friendly tenses takes the 
settledness vs. openness for their essential feature, while reading this distinction 
as modal, i.e.,  concerning alethic necessity and contingency. On this view, 
tenses and what their loci are, depend on patterns of chancy local events.  
Suggestions  to link tenses to indeterminism can be found in Whitrow (1961, 
pp. 295–296), or more recently in Ellis (2006, pp. 1812–13), yet, since the 
project requires a framework combining time and modality, it has not been 
rigorously investigated until recently. 

Our aim is to first define, in the context of special relativity, the future of a 
given point-like event, and then use it to intrude the remaining tenses. Having 
said that the future has an aspect of contingency, there are many ways how to 
precisify this intuition. Motivated by examples like the Summer solstice 2018 
(i.e., an apparently deterministic yet future event), I opt for the following weak 
reading:

(*)  f is in the future of e because there is some event e’ before (or identical to)  f 
and a subject matter A such that at e it is contingent that A obtains at the 
location of e’.

To turn this idea into a  rigorous definition, we construct a semantic model 
based on the so-called Minkowskian Branching Structures (MBS) of  Placek & 
Belnap (2012). An MBS represent alternative possible scenarios, all developing 
on a stage of Minkowski space-time from some common past (initial 



conditions).  A  possible scenario is thought of as Minkowski space-time plus a 
physical content, the  latter being represented by an attribution of “point 
properties” to quadruples of real numbers.

The construction of an MBS is governed by two rules: (1)  An anti-haecceity 
thesis requires that  any two scenarios must be  qualitatively different 
somewhere.  (1) A strong anti-haecceity thesis further postulates that if a 
quadruple x has different properties assigned in two scenarios, then there is  a 
special point (quadruple) c below x  such that the two scenarios agree 
qualitatively in the past  of c but disagree somewhere closely above c. 

An MBS is a semantic model for languages with modal and temporal operators. 
Hence given an event e in an MBS, the definition (*)  picks its future, past, and 
present.  Tenses so defined have the following features:

1. the concept  of “the present of e” is (special) relativistically invariant;
2.  tenses and causal relations (light cones) are different, e.g., the past of e is 

typically not the backward cone of e;
3. what the present of e is is contingent: it  depends on the localization of 

chancy events, which in turn depend on localization of qualitative 
differences (on what might have beens);

4.  there are  two extreme cases for the now: the whole world and an 
achronal 3-dim space-like surface.

I will leave it to the audience’s evaluation whether such contingent tenses with 
somewhat weird features are satisfactory for friends of tenses. 



Conventionality and Reality

Pieter Thyssen

Institute of Philosophy, KU Leuven, Belgium

Two debates have been central in the philosophy of special relativity. The debate

on the conventionality of simultaneity was sparked by Einstein in 1905, and the

debate on the dimensionality of the world was initiated by Minkowski in 1908.

Both debates have raged ever since. Yet, interestingly, the link between them

has rarely been explored.

Important exceptions are Weingard, Petkov, Ben-Yami, Cohen and Sklar.

Radically different conclusions were reached however about the way the former

debate impacts the latter. According to Weingard [1] and Petkov [2–3], the con-

ventionality thesis lends further support to the claim that the world is four-

dimensional. Ben-Yami [4] and Cohen [5] disagree and argue for the opposite

thesis, whereas Sklar [6] remains largely uncommitted.

The purpose of this talk is to clarify the current situation by further exploring

what implications (if any) the conventionality of simultaneity has for the debate

on the reality of spacetime.

In the first part of my talk, I focus on the (in)famous Rietdijk–Putnam

argument for the four-dimensionality of the world [7, 8]. Drawing on the work

of Peterson and Silberstein [9], I reformulate the Rietdijk–Putnam argument

in order to make its structure more explicit, and thereby expose the different

assumptions that go into the argument.

I then turn to the various objections that have been raised against it. After

briefly reviewing the transitivity objection, I focus on the conventionality objec-

tion which is based on the conventionality thesis of simultaneity and which was

first put forward by Weingard [1] in 1972 and by Sklar [6] in 1981. Since then,

it has also been voiced by Cohen [5] and (apparently without knowledge of the

earlier authors) by Ben-Yami [4].

According to the conventionality objection, since simultaneity is a conven-

tional notion, reality becomes conventional too. Sklar [6] for instance argues

that since “what counts as the present is only a matter of arbitrary choice, so

then is what is taken as real.” As a result, the Rietdijk–Putnam argument does

not even get off the ground.

1



I show the situation to be more subtle than that, and argue that the way in which

the conventionality thesis impacts the Rietdijk–Putnam argument depends on

whether the conventionality of simultaneity is an ontic or epistemic thesis. If it

is an ontic thesis, the conventionality objection goes through as intended.

With regard to the epistemic position, I make a further distinction between

the agnostic and the ε-epistemicist. I argue that on most epistemicist positions

regarding distant simultaneity, the Rietdijk–Putnam argument remains unaf-

fected by the conventionality objection. Only on a neo-Lorentzian reading of

special relativity with a notion of absolute simultaneity, or in certain interpreta-

tions of quantum mechanics which introduce a preferred foliation of spacetime,

does the Rietdijk–Putnam argument fail.

In the second part of my talk, I turn to the Weingard–Petkov argument

for the four-dimensionality of the world [1–3]. Whereas the Rietdijk–Putnam

argument relies on the relativity of simultaneity, the Weingard–Petkov argu-

ment relies directly on the conventionality of simultaneity. It therefore does

not face the threat of the conventionality objection. However, I show that the

Weingard–Petkov argument still suffers from the same transitivity objection as

the Rietdijk–Putnam argument, and also raise a number of further objections.

I conclude that the soundness of the Rietdijk–Putnam and Weingard–Petkov

arguments hinges on our interpretation of reality, and in particular on whether

‘being real’ is a monadic, dyadic or triadic relation. Whatever the case, since the

reality relation does not belong to the formalism of special relativity, I concur

that special relativity is unable to resolve the debate on the dimensionality of

the world. Special relativity leaves the dispute underdetermined.
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Anguel S. Stefanov 

THE GROWING BLOCK CAN HARDLY EXPLAIN THE EXPERIENCE OF TIME FLOW 

 Every physical theory works with a concept of time that is perfectly, but formally 

inscribed within its mathematical apparatus. The fundamental problem what is the nature of 

time, and of space-time, is left for a more abstract theoretical reasoning, and chiefly for 

philosophy (metaphysics). 

From a metaphysical point of view there are two different conceptions about the 

nature of time. The first is a dynamic one, and is elaborated by different, so called A-theories 

of time. Usually, they seriously speak about time as flowing. This conception stays in 

harmony with the classical view that the physical world is three dimensional and evolves 

through time. However, this classical view is taken to be obsolescent against the background 

of the ontologies of the special and of the general theory of relativity.  

The second conception of time, the static one, is elaborated by different, so called B-

theories of time. It postulates time to be a universal dimension of a basic physical reality – the 

space-time. So, time ceases to be accepted as flowing. The static conception stays in harmony 

with the ontologies of the special and of the general theory of relativity. However, it implies 

the view of the block-universe, which is somehow reluctantly accepted by scientists and 

philosophers, and raises a problem of its own – why then time is experienced as flowing?  

Against the background of the embarrassments just mentioned, a third conception 

about the nature of space-time has emerged – the so called growing block theory. It shares 

parts of the ontology both of the static and of the dynamic conception of time. To this effect it 

is expected that this theory can provide a better understanding of the nature of time. And if so, 

one could also expect that the growing block is in a position to explain why time is perceived 

by us to be flowing. 

I’ll try to show that unfortunately this expectation does not hold water. 

According to the growing block theory, the spatio-temporal aspect of the physical 

world is but a growing “block” of space-time filled with material events. This means that the 

universe remains static regarding all its states belonging to the past, while it is intrinsically 

dynamic regarding all its future states.  

 If the physical world is accepted to be a growing block, then a natural assumption is 

the experience of the flowing time to be referred to the effect of the growth of the spatio-
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temporal block itself. Time flow is explained by the process of addition of new slices of reality 

onto the block. The curious question then can be posed “How fast does the block grow?”  I 

am not sure that this question has obtained a definite answer.  

 Let us suppose, however, that the universal block grows at some definite rate. Then 

this rate could be taken to be at the base of our sense of time passage. But this contention can 

hardly be taken to be true, neither from a psychological, nor from a physical point of view.  

For one reason, human experience of time flow does not seem to be fixed. It depends 

on our emotional states initiated by different life conditions.  

And for another reason, because of the fact that for two observers, being in relative 

motion to one another, an event lying into the future of the first observer can be a present 

event for the other one. According to the growing block theory such an event must not have a 

real existence for the first observer. However, the same event is taken to be quite real for the 

other one. 

Along the line of this consideration the conclusion comes to the fore that the concept 

of real existence becomes relative. And if this conclusion is unacceptable, then one has to 

assume one of the horns of the following dilemma: either there is something wrong with the 

theory of the growing block, or the universal block is really growing, but its enlargement 

cannot explain the human sensation of time flow.  

The proponents of the growing block could wish to cope with the first horn of the 

dilemma, and to evade the conclusion about the relativization of reality. This could solely be 

done through the claim that the accreting slices of reality have some well-defined thickness, 

allowing one and the same event to be both present for one observer, and a future one for 

another observer. However, this supposed thickness of the block slices would be a purely 

arbitrary assumption, in so far as it is not an empirical consequence from any affirmed 

theoretical principle. This is an ontological difficulty.  

But even more, if one would like to relate the growing block theory with what we 

know about the real expansion of the universe, then one would meet two other 

embarrassments. The first one is the alleged non uniform way of the universal expansion, and 

the other is concerned with putative local variations of the expansion, dependent on the matter 

and energy distribution along the boundaries of the universe (while the so called “dark 

energy” has a constant value). 
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Does this mean that the experienced passage of time will undergo a parallel change as 

well? An objection could here be raised that this question does not presuppose a reasonable 

answer, since if our subjective feeling of time passage is induced directly by the universal 

expansion, any observation of a change of our human subjective feeling would be impossible. 

But even if this were true, the very posing of the question is not meaningless. It comes out 

then that the changing rate of the universal expansion is somehow ontologically connected 

with the variable speed with which the time of our experience is contended to pass. Thus one 

becomes bound by another unsolved (and as it seems, unsolvable) problem about the speed of 

time passage.  

In the face of the difficulties of the growing block to explain the reason why time is 

perceived to be flowing, it seems reasonable the second horn of the dilemma to be embraced. 

So, it comes out that the growing block theory, even if taken to be an adequate account of 

spatio-temporal reality, is not in a position to explain the human sensation of time passage.  

  

  

  



Can a worldview contradict experiment: can
experiment decide whether spacetime represents
an evolving present, a block universe or a growing

block universe?
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Note that there is no dynamics in space-time:
nothing ever happens there. Space-time is an unchanging,

once-and-for-all picture encompassing past, present, and future.
Robert Geroch [1]

The issue of whether experiment can prove or disprove a worldview is contro-
versial. On the one hand, a worldview is supposed to reflect adequately what exists
which means that a worldview must be based on observations or experiments. On
the other hand, both observations and experiments may have more than one inter-
pretation which implies more than one view of the world. What further complicates
this issue is that some philosophers still seem to believe that philosophical views
about the world are exempted from the scrutiny of experiment, which leaves open
the obvious question – how can it be determined whether such views have anything
to do with the external world?

I will first provide arguments which I believe show that any knowledge about
the world (not just science) must be based on the existing experimental evidence
and be amenable to test by experiment. Then I will consider the main theme of the
conference – the nature of spacetime – as a case study and will examine whether
the existing experimental evidence is sufficient to rule decisively on whether space-
time should be regarded merely as an abstract mathematical notion which models
an evolving present, or spacetime represents a block universe or a growing block
universe.

In other words, as the dimensionally of the world is an integral feature of reality,
the examination of the experimental evidence will determine whether the crucial
question of what the dimensionality of the world is can be unambiguously answered.

1



I will begin the case study by rigorously examining Minkowski’s insistence,
made in his 1908 lecture “Space and Time,” that the spacetime view of the world
(introduced by him and often called block universe) “arose from the domain of
experimental physics” [2] and will show why his assertion is correct which means
that a worldview can indeed be tested by experiment. Then I will discuss whether
there is any support from experimental physics for the other two main worldviews
– the evolving present and the growing block universe.
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THE POST-DETERMINED BLOCK UNIVERSE
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By starting from the assumption that the time evolution of a quantum system is always unitary, I arrive at a type
of block universe which is different from both the standard one, and from the evolving one.

In fact, the unitary time evolution of quantum systems is not an additional assumption, it follows from the
Schrödinger equation and its relativistic versions. What I do is not to add a new assumption, but to argue that
the assumption that unitary evolution is suspended during measurements and replaced by a discontinuous collapse
of the wavefunction is not actually proven by experiments, and its acceptance was done too quickly. If we can show
that the discontinuous collapse is unnecessary, new possibilities open, including for combining Quantum Theory with
General Relativity without sacrificing any of them.

The solutions of Schrödinger’s equation are unitary, but when we think about “unitary evolution”, we think at
two different things. On the one hand, as long as no measurement is made on a quantum system, we can regard the
wavefunctions as physical fields. Not fields on spacetime, but fields on the phase space. On the other hand, Born’s
rule gives a statistical interpretation of the wavefunction, which is consistent with the experiments too. Let us call the
first interpretation “ontic”, and the second “epistemic” (these notions may be used differently by different authors,
but I will stick with the definition that “ontic” means that the wavefunction is a physical field on the phase space,
and “epistemic” is the knowledge of probabilities or information). Both positions are correct and mutually consistent,
once we realize that they refer to different wavefunctions, as I will explain.

The second view was introduced because quantum measurements don’t give the wavefunction, but an eigenvalue of
a Hermitian operator which is associated to the quantities that we measure. Consequently, we find the wavefunction
in an eigenstate, with a probability given by the Born rule. If there was no such problem of measurement, we could
interpret very well the wavefunction as being a field in the phase space, and we would have no measurement problem
at all. But when we successively perform two incompatible measurements, it seems that the only way to get both
times an eigenstate is if we admit a projection happened between the two measurements, which is taken as a collapse
and as forcing on us the idea that the wavefunction is probabilistic.

A quantum measurement requires a measurement device, which is a very large quantum system assumed to behave
almost classically. This means that we ignore its true quantum state. We also assume that quantum measurements
are sharp, which was proven by Wigner to hold only approximately [13, 3]. However, can we make such a strong
statement, which amounts to suspending one of the most successful equations, given that the true quantum state of
the measurement apparatus is ignored, and that in fact no truly sharp measurement can be made? Why would the
evolution be always unitary, no matter for what systems, only to be violated during quantum measurements?

A discontinuous collapse leads to several problems. The conservation laws are due to the commutativity of the
operators with the Hamiltonian, but they don’t commute with the projectors invoked during measurement. In fact,
simple thought experiments show that conservation laws are broken, no matter how we interpret the wavefunction,
and this happens even in the Many Worlds Interpretation, for each single world [12]. Moreover, a discontinuous
collapse introduces problems with General Relativity, since it implies that also the stress-energy tensor associated to
the field collapses, hence, by Einstein’s equation, the geometry of spacetime becomes discontinuous, and the covariant
derivatives infinite, which is more than unpredictable.

Fortunately there is a way by which unitary evolution is preserved also during measurements, such that the recordings
are still consistent with the experiments [7, 11, 12] 1. This of course should take into account the low-level interaction
between the observed system and the measurement device.

However, unitary evolution implies the necessity that the initial state of the observed system and that of the
apparatus are in a special relation, even before they interact [9]. The initial conditions for which this works form a
zero-measure subset of the Hilbert space! Now this can be seen as “retrocausality” or “superdeterminism”. But we
know from Bell’s theorem that we have to choose between nonlocality and statistical independence (the second option

E-mail address: cristi.stoica@theory.nipne.ro; holotronix@gmail.com.
1Schulman proposed that this may be ensured by imposing that the initial and final states of the universe are separable [4, 5], which is

not the position taken here.
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was coined by Bell “superdeterminism”). For someone who prefers that the state of the universe is determined (even
though unknown) at each instant, in particular for a presentist, nonlocality may seem acceptable. But for a relativist
nonlocality may be unacceptable. All dynamical equations, including Schrödinger’s and its relativistic versions, are
local, since the interactions involved are local (although the states can be entangled). Nonlocality will seem at odds
with relativity, but assuming that the initial conditions are very special somehow is still consistent with locality and
with special and general relativity. The block universe comes to rescue.

We tend to see the dynamics as determined by the initial conditions and the evolution equation. However, in some
cases there are obstructions to the existence of global solutions for most initial conditions. When topology is involved,
these obstructions imply that not all initial conditions lead to global solutions. A simple example comes from finding
all holomorphic functions on a sphere, where the mere topology of the sphere combined with the Cauchy-Riemann
equations lead to a drastic reduction of the possible global solutions, allowing only the constant ones.

The study of these obstructions on the existence of global solutions is done in sheaf theory, in particular in sheaf
cohomology [2]. We don’t know at a fundamental level what quantization is, we only know recipes to get quantum
theories out of classical theories. We don’t fully know the topological implications of the various bundles involved
in gauge theory, neither the topological properties of particles, but there are indications that they may be relevant.
When we will have such a theory, we will have to take into account the topological obstructions, and see what are the
implications on the initial conditions. Then, in such a theory it may be the most natural thing to assume what for a
presentist looks like “superdeterminism” or “retrocausality”. This possibility was proposed in [8, 10].

This kind of block universe is deterministic, but it is not predetermined in the usual sense. The initial conditions
are determined with a delay, by each new measurement and each choice of what to measure. The requirement of
global consistency implies a severe restriction of the solutions of the Schrödinger equation, but since the observers
can choose what to measure, it looks like they determine the past initial conditions more, with each new choice. The
solution is still deterministic, but it is determined by future choices. We can still think at this as superdeterminism or
retrocausality, if we assume that the initial conditions are fixed from the beginning. But we can also take the stance
that the quasi-classical limit, which is a coarse graining of the low-level quantum state, evolves by usual causality in
an indeterministic way. As observers, we start with the full set of quantum states consistent with the macroscopic
observation, and then reduce them as new measurements provide more information. And since we never know the
true quantum state, but only outcomes of our observations made on subsystems, these observations allow us to predict
only probabilities, or an epistemic wavefunction which is an approximation of the ontic wavefunction. Moreover, this
combination between choice and determinism has implications about free will [6, 10, 1].

By eliminating the discontinuous collapse, we remove an important obstruction which seemed to put quantum
theory and general relativity at odds with each other. The so-called semi-classical gravity can now be more than an
approximation of a future theory of quantum gravity. With an ontic wavefunction, the “expectation value” of the
stress-energy operator is not a probability, but a field, and we can plug in into Einstein’s equation and get a well-defined
classical geometry.

This type of block universe is as deterministic and fixed as the standard one from the bird’s eye view of someone
who knows completely the ontic wavefunction of the universe. From the point of view of someone who is part of the
universe itself, like us, it may look as a growing block universe, with the amendment that the growth is not only
towards the future, but at quantum scale it is also towards the past, giving the impression of retrocausality. But this
retrocausality is not accessible to us to send messages into the past or at a distance, being forbidden by the fact that
we only have clearance to approximate eigenstates, and not to the full quantum state of the observed systems.
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Abstract for 5th International Conference on the Nature and Ontology of 

Spacetime 2018 

Uri Ben-Ya'acov 

 

Title : The implication of Gödel's incompleteness theorem on our apprehension of the nature 

of space-time 

Abstract : 

The central theme of this conference is the nature of space-time, and my question is : To what 

extent can such questions be answered ? Is it possible to arrive at a final statement regarding the  

nature of space-time ? Is it possible to encompass with a finite number of first principles and 

inference rules the full extent of the Universe ? 

Gödel's incompleteness theorem implies that in any consistent and rich enough formal structure, 

based on a finite number of first principles and inference rules, there will always be claims that 

may be formulated within this formal system but are undecidable – questions that are not 

answerable, claims that cannot be either proved or refuted. 

A close inspection of Gödel's theorem demonstrates that this impossibility arises when the claims 

are self-referential, or, more precisely, when the system asks to define itself in its own terms. This is 

very relevant to our case, since questions regarding the nature of space-time, the basic structure of 

the Universe, are asked from within it. 

The way to remedy, in a sense, the non-answerability, is to add new first principles that allow an 

answer. Such first principles necessarily rely on new observations. But their addition creates a new 

theory, which in its turn produces new non-answerable questions.  

In this way new insights, new knowledge, new information that are not derivable from old ones will 

be accumulated. The scientific research will produce, in a never-ending process, more and more 

insights, understandings and knowledge, within larger and larger theories. 

This situation is certainly very familiar from the history of science, and I don't pretend to present in 

this sense any novelty. However, the fact that it is organically inherent in the nature of the scientific 

process, as is asserted by Gödel's theorem, is not realized by many, and if it is it seems to bring 

disappointment: Many people wish to arrive, hopefully in their life-time, to a theory that fully 

describes, with few and simple first principles, the whole of the physical world. This was certainly 



the vision of Newton and Einstein. The realization of impossibility of such aspiration causes them 

much disappointment. 

My view is different : 

The more we know then there is, and will be, even more to be known and reveal. The prospects 

to discover become larger, not smaller. 

The "cake of knowledge and understanding" is not fixed, unchanging, but rather ever-growing. 

Thus there will always be more to be known, to be revealed, to discover, not less. 

And indeed, if this were really the case (i.e., that a theory that fully describes, with few and 

simple first principles, the whole of the physical world, is possible), then what new first 

principles will be left for the coming generations to reveal and discover ? What prospects would 

they have then ? 

Not every question that lacks answers is Gödelean (i.e., self-referential and non-answerable in the 

absence of appropriate first principles), but it is very reasonable that questions regarding the nature 

of space-time, like the theme of the conference, are Gödelean. I will attempt also to discuss, as 

much as possible, also the nature of such Gödelean questions, which is currently an evolving 

research. 
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Dark Matter = Modified Gravity? 
Scrutinising the spacetime-matter distinction through the modified gravity/ dark matter lens

Niels Martens & Dennis Lehmkuhl

When applying the laws of gravity to the luminous matter that we observe around us in the 
universe, one obtains an evolution of that matter which is not empirically adequate---at 
the scale of galaxies and galaxy clusters as well as at the cosmological scale. We face a 
dilemma between two options that seem to be obviously distinct: either the matter sector 
needs to be complemented with non-luminous (i.e. dark) matter (DM), or the gravity 
sector needs to be modified (MG) (or perhaps a bit of both). 

Although this dichotomy indeed seems to hold up when merely applying Newtonian Gravity, 
as is often sufficient at the level of galaxies, this distinction becomes much less clear when 
moving to relativistic and quantum theories. Features that are historically taken to be 
paradigmatic hallmarks of matter suddenly feature in theories labeled as modified gravity 
theories, and vice versa. Instances of self-identified modified gravity theories feature 
novel degrees of freedom, which are dynamical, often contain mass terms in the 
Lagrangian, sometimes even have an associated stress-energy-momentum tensor, and/or 
exhibit violations of versions of the equivalence principle.  Instances of self-identified dark 
matter theories contain fractional powers of the dark matter field in the Lagrangian, 
rendering a standard field theoretic treatment in terms of Feynman diagrams implausible. 
Sometimes the coupling of the DM to the Standard Model fermions obtains only indirectly, 
via the Higgs boson, which is associated with mass (even if not gravitational mass). 
Moreover, one can obtain certain DM theories from MG theories via a simple conformal 
transformation, and vice versa. And taking back a step: were we ever clear on why the 
metric tensor should be considered more geometrical than, say, the electromagnetic 
vector potential? Einstein doubted it. 

In this paper we investigate what criterion, if any, distinguishes DM theories from MG 
theories. In doing so, we not only draw upon literature on the broader distinction between 
matter on the one hand and spacetime/gravity/geometry on the other, we also move in 
the other direction by pointing out the implications of the ambiguities inherent in the DM/
MG dichotomy for this broader distinction. More specifically, we compare Khoury and 
Berezhiani’s Superfluid Dark Matter with Hossenfelder’s Lagrangian formulation of 
Verlinde’s emergent gravity. We extract from the literatures on spacetime functionalism 
and on the substantivalism-relationalism debate---in particular responses to the hole 
argument---a family of candidates for being necessary and/or sufficient criteria for an 
object being (dark) matter, as well as a similar family of criteria that determine whether 
an object is a (modified) spacetime. Both of the above theories score maximally with 
respect to both families of criteria: both theories are as much of a dark matter theory as 
possible, as well as being as much of a modified spacetime/gravity theory as possible. 

This case study is a first sign that the distinction between modified gravity and dark matter 
theories is much less clear than usually assumed, in a variety of respects---and by 
extension the spacetime-matter distinction. Or, at the very least, if one insists in holding 
on to a strict criterion, several candidate theories have been incorrectly labeled as DM or 
MG theories. This blurring severely undermines the current animosity between dark matter 
advocates and modified gravity advocates, as well as the substantivalism-relationalism 
debate (where both camps agree that spacetime and matter are clearly conceptually 
distinct). 



Space-Time in Upheaval: Relativistic Cosmology and the End of a 
Static Universe.

Alexei Kojevnikov
Department of History
University of British Columbia

History of science demonstrates that throughout the centuries, 
metaphysical ideas and philosophical preferences played a very significant 
role in the development of cosmological thought. This is probably 
unavoidable, given the fundamental incompleteness of empirical data when 
the object of investigation is defined as the entire Universe as a whole. This 
paper investigates the major transformation in the conception of the 
cosmological space-time that occurred during the first half of the twentieth 
century, namely, the abandonment of the traditional preference for a stable, 
static Universe and the gradual acceptance of the uncomfortable view that 
our Universe was born out of a singularity, in a violent, explosive way 
billions of years ago, then expanded dramatically, eventually can possibly 
collapse back into a point, and maybe even be born again. The first 
proposal of such a Universe appeared shortly after the formulation of the 
general theory of relativity, even before the discovery of any empirical 
astronomical evidence that could support it. The analysis of the 1922 
mathematical paper by Alexander Friedman reveals its three fundamental 
conceptual assumptions that contradicted the then generally shared 
expectations of what a satisfactory cosmological model should entail: non-
stability of the cosmological space-time, singularity of the creation of the 
Universe that decades later would be called the “Big Bang,” and potential 
periodicity of cosmological lifecycles. No surprisingly, the non-static model 
was initially rejected or, more typically, ignored. Further analysis of its 
gradual reception, development and confirmation during the subsequent 
four decades in the works by Weyl, Eddington, Lemaitre, Hubble, Einstein, 
De Sitter, Tolman, Gamow, and others, resulted in the acceptance of most, 
though not all, of its initial hypothetical assumptions. Historical debates and 
arguments pro and contra also allow a discussion of what was the possible 
philosophical/metaphysical/existential basis behind the initial proposal of 
the “Big Bang” model.                 



Renormalizing Spacetime
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(April 24, 2018)

Abstract

Three of the four fundamental forces have been successfully renormalized, yielding theoretical predictions that agree with
experiment to an unprecedented level of accuracy. However, gravity is not renormalizable [1]. Why does renormalization
work so well for the other three forces, but not for gravity? Firstly, consider how renormalization is applied in the case
of quantum electrodynamics (QED). The QED Lagrangian is a function of bare charge and mass, as well as bare �elds.
Renormalizing only the bare parameters of charge and mass will not yield a �nite theory. It is crucial that the bare �elds
are also renormalized. The same is true in perturbative quantum chromodynamics (QCD), where one must renormalize the
quark and gluon �elds, in addition to the coupling constant and quark mass, in order to obtain a �nite theory. In fact, in
all quantum �eld theories, �eld �uctuations modify bare �elds such that they become a function of scale. A bare �eld φ, for
example, is converted into a renormalized �eld φ̃ via so-called wavefunction renormalization φ̃ = φZ−1/2(p), where Z(p) is
a renormalization factor encoding how φ depends on the momentum scale p. However, up until now the renormalization of
the gravitational �eld (the spacetime metric tensor gµν) has been largely neglected [2]. The aim of this talk is to determine
a unique expression for the wavefunction renormalization of gravity, and to explore how this procedure may help to make
quantum gravity renormalizable.

References

[1] Marc H. Goro� and Augusto Sagnotti. The Ultraviolet Behavior of Einstein Gravity. Nucl.Phys., B266:709, 1986.

[2] T. Padmanabhan. Distribution function of the Atoms of Spacetime and the Nature of Gravity. Entropy, 17:7420�7452,
2015.

1



Extended Space-Propertime Diagrams

Antoine A.J. van de Ven∗

January 31, 2018

Benefits of using space-propertime diagrams are demonstrated by giving a new visual and geometrical
derivation of the Lorentz transformations. With a space-propertime diagram we mean a diagram with the
usual three spatial dimensions x,y and z and the proper time times c (cτ) as the fourth dimension. By
extended we mean that we also use the negative proper time direction to represent anti-particles. Note
that this is not possible in Minkowski spacetime diagrams, so these diagrams can represent more. Now we
introduce the following axiom:
1) In at least one frame everything moves with the velocity of light (c) through space-
propertime.
Mathematically this can be expressed as c2dT 2 = c2dτ2 + dx2 + dy2 + dz2 with T representing the time
of a stationary clock in that frame. Note that if we rewrite this we see it is equivalent to the line-element
of special relativity: c2dτ2 = c2dT 2 − dx2 − dy2 − dz2. In a space-propertime diagram T is the length
of the worldline of any particle, and the propertime can be directly seen on the new axis. So if twins A
and B, of which only B accelerated, meet again after a time T (so the lengths of their worldlines must be
equal) at location x, it is easy to see that the proper time of the accelerated person must be less, so B is

younger. This visually solves the twin-paradox.

x

B

A

cτA

cτB

It is also easy to derive the
time-dilatation factor γ by using purely geometrical arguments. The angle depends on the velocity. To
visualize and geometrically derive length contraction we use can use the following axiom:
2) The three dimensional space (x,y,z) corresponding to each individual reference frame is
orthogonal to the direction of motion of that frame through the four-dimensional space-
propertime.
By using the same angle to compare rulers, the scaled spatial transformation becomes x′ = γ (x− V T ).

If an observer in any other inertial frame uses slow clock transport in its frame to synchronize clocks and
to define simultaneity, we can then see that the transported clock (dotted wordline) will have a different
proper time, even when the clock is moved infinitely slow. In that limit the worldlines can be seen as
parallel and by using geometry that time difference can be derived.

∗Email: Antoine@vandeVen.info
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α

c∆τ

α∆x′

x

cτ

α

This leads to t′ = T
γ − V

c2
x′ = T

γ − V
c2
γ (x− V T ) = γ

(
T − V

c2
x
)
. So here it is shown that using slow

clock transport to define simultaneity leads to the Lorentz transformations and all its consequences. These
geometric derivations and these axioms, that do not postulate relativity, are new according to the author.
The author previously also proposed the following: The energy-momentum four-vector can be visualized
in a similar diagram, by using the mass m as the extra dimension, and the energy as the length of the new
vector. In the theory of the author and in these diagrams it is possible to move in a negative proper time
direction and to have negative mass. The author interprets these as antiparticles. Usually the minus signs
of the mass and proper time cancel, but not for the gravitational source tensor. So the author predicts that
antimatter produces anti-gravitational fields and gravitationally repels one another and could cause effects
such as dark energy and could be present at the Dipole Repeller, a region in the universe which seems to
gravitationally repel everything. This could also help locating the missing antimatter in the universe. In
this theory antimatter can’t form stars, so it will be dark and distributed. It can also solve the vacuum
energy problem, because the gravitational effects of the virtual particles and virtual antiparticles in the
quantum vacuum would cancel each other in this theory. See [1, 2] for more details and references.
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Enforcing the Unity of Space and Time using Quaternions 
 
Gentlemen! And women! The radical change where "space by itself and time by itself will receded 
completely to become mere shadows" has yet to occur. Well-respected physicist continue to debate the 
problem of the arrow of time, when the discussion should be about the arrow of space-time. 
 
Why are we still waiting? 
 
The tools of tensor calculus are flexible in regards to dimensions. The Universe is not. If I were so radical 
as to erase all the Greek subscripts and superscripts from technical books and papers on physics, then I 
might be able to replace them all with a kind of four dimensional number known as a quaternion. A 
quaternion forces one to write time or time-related terms in the scalar part, and space or space-related 
terms in the 3-vector part of a quaternion. There is never a choice to omit. There are a number of 
immediate benefits to this Minkowski-friendly change of accounting systems. When Newton's second law 
is written out, there are two time derivatives that have no corresponding spatial derivative. The 
appearance of zeros or constants where operators could go shows an expression is classical. To generate 
the second law requires three zeros, so the law is as classical as can be. A relativistic expression on the 
other hand will have no space-time terms that are zero or constant. Take for example the difference 
between two arbitrarily close events in space-time and square it: 
 

dt, dx/c, dy/c, dt/c) dt dx y z )/c , 2 dt dx/c, 2 dt dy/c, 2dt dz/c)(    2 = ( 2 − ( 2 + d 2 + d 2 2     
 
Notice that the first term is identical to the Lorentz invariant interval for inertial observers, the symmetry 
at the heart of special relativity. There is now an opportunity for new physics by considering the a 
symmetry for the other three terms which I call space-times-time. The Schwarzschild solution of 
Einstein's general relativity theory for gravity almost leaves the space-times-time terms unchanged. I 
propose that the accidentally unchanged space-times-time is an an exact symmetry, the symmetry that 
gravity is about. Currently, gravity is the solution of ten nonlinear differential field equations. This 
proposal argues that gravity is a symmetry about all space-time algebra. In special relativity, one uses 
observers velocities to figure out how to conserve the interval. In this proposal, gravitational escape 
velocities do the same task to conserve space-times-time. 
 
Radical ideas require much work. Such is the case for quantum mechanics which is usually written using 
a Hilbert vector space over a complex number field. I have made technical progress on this subject using 

series of quaternions to define precisely the inner product of two states: . I have|B ≡  B  b < A > A * = ∑
m

n
a *
n n  

an iPython notebook which demonstrates different ways the quaternion representation is equivalent to the 
standard Hilbert space approach. Here again, when one writes out central equations in quantum 
mechanics such as the Schrödinger equation or the Klein-Gordon equation, one gets four equations 
instead of just one. We should expand Minkowski's vision of the profound union of time-like and 
space-like expressions into the quantum domain for fresh insights. 



Slicing the Schwarzschild spacetime block

Colin MacLaurin
University of Queensland

Nature and Ontology of Spacetime, 2018

In the spacetime of a non-rotating black hole, simultaneity is typically de-
fined using the Schwarzschild-Droste t-coordinate, interpreted as the time at
spatial infinity. Under such a choice, 4-dimensional spacetime is sliced into
3-dimensional hypersurfaces, each representing a present moment of constant
“time”. This coordinate slicing is the same as that determined by static ob-
servers, who are situated at a fixed location outside the event horizon. I present
a different choice of simultaneity, based on families of observers freely-falling in
the radial direction. (Because the observers have zero vorticity such a global
time is well-defined by Frobenius’ theorem, see Ellis.) This choice yields a dif-
ferent convention of the “present” time in the Schwarzschild block universe.

r = 0

ℐ-

ℐ+

I0

I+

Schwarzschild-Droste t=const

Eddington-Finkelstein v=const

Hail (e=1.5) T=const

Gullstrand-Painleve (rain e=1) T=const

timelike Eddington-Finkelstein t=const

Drip (e=0.45) T=const

Figure 1: Simultaneity choices under various coordinates and observers, shown
in a Penrose diagram. Hail, rain and drips are metaphors for radial motion at
various different velocities. The plotted lines are not worldlines (mostly), but
rather spatial surfaces (mostly) of constant time. Only one spatial slice is shown
for each simultaneity convention, and while they particular slices coincide at the
singularity they diverge dramatically near infinity.

Many familiar textbook properties of black holes are implicitly based on the
static slicing. For instance 3-dimensional space has a funnel-shaped embedding
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geometry (Flamm’s paraboloid) under the static slicing, but the geometry of
a cone under our slicing because the 3-spaces are different. The usual radial
proper distance is measured along a static slice, but the alternate slicing gives
a simple formula based on the observer’s energy. The way “time at infinity”
extends to finite locations is different under the alternate convention, which is
conceptually important because of the rough analogy with human observers in
the Solar System far from any black hole. Hence an object freely-falling through
the horizon takes infinite time at infinity under the static slicing, but only finite
time at infinity under the alternative.

I will present new coordinates to describe the falling observers, extending
a generalisation of Gullstrand-Painlevé coordinates made by Gautreau & Hoff-
mann and others. However both the static and falling observers are mathemati-
cally well motivated from the intrinsic geometry, being determined from Killing
vector fields and asymptotic flatness. If possible I will relate the implications
for this simultaneity convention to the various positions on the block universe
as presented at the conference.
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Abstract

Is special relativity in contradiction with quantum me-
chanics?

The average theoretical physicist will spontaneously answer this
question with a definite “No!”. However, in the very large com-
munity of theoreticians who work in the area of the foundations of
quantum theory, an overwhelming majority will answer with “Yes!”.

In this talk I shall show that in this case the average theoretician is
right, and mosts experts in foundational matters wrong, even though
they will come up with complicated and sophisticated looking argu-
ments to prove their point.

For this I have developed a mathematical formalism in which one
can simultaneously consider classical and quantum systems, a for-
malism that is completely equivalent to the standard description,
but that allows a much better comparison between the two types
of systems. It is like looking at the situation from another angle. I
have called this formalism an ”an algebraic dynamical system”. It
turns out to be particularly useful for a rigorous study of the foun-
dations of quantum theory. Using it I have found surprising but also
very provocative results, which amount to the fact that most of the
literature on this subject is wrong, or irrelevant, at best.

For example, the much discussed notion of ’collapse of the wave
function’ does not exist or is trivial; the well-known thought ex-
periment of ’Schrödinger’s Cat’ is just a simple classical stochastic
process, which has nothing to do with quantum mechanics. There
does not exist a ’measurement problem’, etc., etc.

I shall not discuss here the general situation the properties of alge-
braic dynamical systems.

The problem (or so-called problem) of the incompatibility of spe-
cial relativity and quantum mechanics is a relatively minor one,
but it fits nicely in the general theme of these conferences, and is
sufficiently representative of the general problem. In this problem
entanglement is an important notion.

I shall make use of slides. They will be simple; each with just a
gew lines of text, and with very few formulas, all this just enough
to serve as support for my oral presentation.
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The ontology of spacetime and the ontology of the wave function! 

 

Mohammed Sanduk  

Faculty of Engineering and Physical Sciences, University of Surrey,  

Guildford, Surrey, GU2  7XH, UK 

m.sanduk@surrey.ac.uk 
 

In 2007 Three Wave Hypothesis (TWH) [1,2] has been considered in angular form, and 

combine its two dispersion relations in only one relation, this system of the three waves is 

transferred to a system of two perpendicular rolling circles [3,4]. The position vector of a point in 

a system of two rolling circles may be transformed to a complex vector under an assumption of 

partial observation effect [5].   Based on that model an analogy has been presented, with 

extended consideration for the partial observation in the Hermann Minkowski Meeting in 

2017[6].  

 

We can say that the concept of the partial observation and the lab observer shows that there 

are two types of regions (Fig.1), the mathematical space & time, and the observable spacetime. 

The classical space & time in macroscopic world is no more than an approximation due to the 

slow speed in comparison with light speed .   

The mathematical space & time is an absolute case and has no relation with the observer’s frame 

of reference. The observable spacetime is an approximation case due to the partial observation.  

 

 
Fig.1 The two regions.  

 

The partial observation works as a filter. This filter separates two different worlds, the real full 

deterministic world (mathematical) and the physical world (observable) of the complex vector 

(analogy of wave function). The lab observer and owing to the partial observation cannot 

recognize the system of two rolling circled and deals with an abstract form. In such a case, the 

lab observer may use some of the quantum mechanics axioms as a technique.  

 

The observable world (of the lab observer) is defined by a complex vector function and the 

flat spacetime. Then the both of the quantum world and its spacetime are related to a partially 

observable system.  The approximation of partial observation is not related to the Planck length 

(minimal physical length).  

The combination of space and time that form the interval is related to the system of the two 

circles combination. The speed of the touch point of the two circles is found to be an analogue 

for the speed of light.  
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That analogy [6] may sagest that both of the relativistic quantum mechanics and the special 

relativity are emergent, and are of the same origin.  

 

The table below shows comparisons between the special relativity equations and those of the 

analogy. 
 

Conventional 

definition 

Equations of special 

relativity 

Analogical model forms 

 
Analogical 

definition 

Light speed   
 is constant  

 
 is constant  

Wave speed 

Lorentz factor 

  

Lab 

transformation 

Relativistic mass 

(angular 

frequency) 

 

  

Lab 

transformation 

Length 

contraction 

  
 

Lab 

transformation 

Four-vector 

 

 
 

 
 

Lab space 
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Physics theories in the context of multiverse 

 The notion of physical law usually presupposes the existence of some 
exceptional conditions, of some mostly standing rules for nature. To this extent, the 
scientist`s intent often comes down to searching for a certain law and formalizing it 
in the equation – expressing it mathematically. Another kind of intent – the 
explanation of the laws nature – is more complicated and unacknowledged by some 
scientists. There are loads of questions for this way of research, such as why the 
entropy was so low at the start of the lifetime of the Universe, why the amount of 
dark energy is precisely fixed, why the particles masses have the observed values, but 
not any different ones, etc.  
 All these questions themselves presuppose that our Universe is unique and 
there is its only one possible implementation – the one we observe. Within such an 
approach the mentioned issues and their ilk are actually very important: answers 
mean unraveling of the enigma of origin. At the same time, these questions provoke 
one more: might the other laws of physics exist (other values of the constants)?  
 The anthropic principle is one of the attempts to answer the question of 
whether the values in our Universe are exactly as we observe them and not something 
different. The answer is: because we would not exist in the case of other values. 
However, this is not the solution for the core of the problem, because another 
question arises here once again: if the other values (at least, theoretically) might exist 
(in other possible worlds).  
 The question is to be declared meaningless by the significant part of the 
scientific community. We do not have and will not have an opportunity to observe 
any other worlds even indirectly in the foreseeable future and also to carry out 
experiments that would reveal them. The scientist`s intent is to predict the results of 
the experiments and to describe them, but not to frame theories according to the 
nonobservable.  
 This rational point of view, however, has seriously dented its confidence at the 
second half of the XX century. The modern cosmology (and other branches of 
physics) is forced to take into account the ideas that seem considerably conceptual 
from a practical perspective. 
 The ideas of the inflation by Alan Guth and the radiation of black holes by 
Stephen Hawking are the good examples here. The idea of inflation has become very 
convenient for the needs of cosmology - it allows explaining some very important up-
to-date phenomena that the classical Big Bang theory had failed to explain. Although, 
there are no strictly scientific grounds to claim its validity. The same applies to the 
most important Hawking`s insight for no other reason than that we will never 
probably observe the radiation of black holes. 



 Despite these strong objections, physicists, however, have successfully used 
the ideas and got certain results following such theories. The superstring theory is 
another typical example, which is a long way off from the possibility of correlation 
with the observed reality, regardless of decades of development.  
 Therefore, the question arises as to whether a mathematical argument, which 
corresponds to the key standards of our intellectual intuition, such as consistency and 
completeness, is enough to be considered the theory validity criterion. This question 
will further show its close connection to the nature of physical laws. 
 The presentation deals with an attempt to define (or, at least, to formulate it 
properly) the nature of scientific theory, its validity criteria, the law in modern 
physics and to specify the tasks of scientific studies. 
 Almost all the constants, which appear in equations, can be questioned as if 
they could be different. At least, in theory. This question is purely theoretical. It is 
meaningless thus far from the point of view of classical physics - the mechanics of 
Isaac Newton, Albert Einstein's relativity theory, and from the point of view of non-
classical one - quantum mechanics. These theories themselves have become the result 
of the certain laws discovery, their mathematical formulation and experimental 
verification. They predict the particular behavior of described systems - the results of 
future experiments. Thus, the law of physics is a certain mechanism, which underlies 
the processes in our reality, the one that we are able to observe. Accordingly, the 
search for alternative laws seems rather strange only because they are not related to 
our reality, and therefore no supervision or experience can formalize them. Moreover, 
it would be correct to say that the concept of “experience” and its inseparably 
associated “observation” have themselves been caused by the same physical laws that 
govern our universe and are possible themselves only because we are the part of our 
universe. This is true because the other laws of physics (e.g., in hypothetical worlds 
with the additional spatial dimensions, the other properties of elementary particles, 
the vacuum energy values, etc.) tend to exclude the possibility of human existence. 
Here we see, of course, the anthropic principle in such a formulation - these are the 
laws of physics because there is no point in referring to some others. 
 This is right. But, as it turns out, there are situations, when it is reasonable to 
talk about the other laws or their alterations (at least, these alterations occur 
themselves, even if we refuse to talk about them). In such cases, the consequences of 
the assumption of the fundamentally different physical conditions need close 
analysis. These consequences appear to be extremely important not only for 
understanding the organization of the universe but for the interpretation of the 
scientific theories and scientific process`s natures. 
 The presentation analyzes the consequences of the principles of inflationary 
cosmology and some of the results of the string theory.



How Einstein and Minkowski missed real valued Lorentz transformations for v>c which are 
possible in 2D and in extended special relativity to 6D spacetime (three space three time) 
and its possible relation to the nature of spacetime and consciousness 
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Abstract 
  Before Einstein’s 1905 paper [1] physicists could, as e.g. Sommerfeld [2], discuss superluminal 
velocities. Nowadays almost everyone knows that Einstein’s theory of special relativity (SR), 
seemingly, excludes superluminal velocities, i.e. 𝑣 > 𝑐, as Einstein from energy velocity relation 
argued that it will take an infinite amount of energy to accelerate a body to v=c [1, p 63-64].  And 
even more impossible to   𝑣 > 𝑐. Yet already in 1962 it was clarified [3] that acceleration is not the 
only means to get a velocity, as light has the velocity c and is not accelerated but “born” with v=c. 
So Einstein’s SR does not exclude phenomena, as e.g. particles, “tachyons”, with 𝑣 > 𝑐. Feinberg 
and others describe possible features of tachyons [4] and possible ways to avoid seemingly 
causality violation [5]. There has also been experimental search for tachyons, the first in 1960-ties 
[6]. Yet no direct detection has succeeded even if some argues for indirect traces [7].  Often is used 
the old energy-velocity relation even for 𝑣 > 𝑐 but assuming “tachyons “ having imaginary rest 
mass gives measurable real valued energy [3,4,6]. Possible but perhaps a little ad hoc. 
  Another approach that seems more in the spirit of principle of relativity and more concerns the 
nature of spacetime is to examine the possibility of faster-than-light inertial frames and possible 
generalisation of the Lorentz transformation: if tachyons exists it is conceivable that a group of 
them with same constant velocity 𝒗 > 𝑐 relative to an ordinary IS could be thought of as an 
inertial frame where these tachyons are at rest and have real coordinates. And if they shall exist also 
in our physical world they must have real coordinates in ordinary IS [8]. Parker [9] showed that this 
is possible for (x, t) but explicitly stated that his approach was not possible for (x, y, z, t). 
  Yet this has been done. Some allow imaginary numbers in the LT [10]. Another way is to add 
extra dimensions [8]. Cole [11] has shown how for four complex variables or six real variables the 
extra parameters are uncoupled for 𝑣 < 𝑐  but coupled for 𝑣 > 𝑐. Pavsic [17] also show how 
contraction from 6D to 4D involves imaginary numbers, see below. 
  Rindler’s derivation of LT [12] gives 𝑑𝑠!= ±  𝑑𝑠!" for 4D. As a heuristic argument the same 
derivation in 2D gives  (as also stated in [9]) 

𝑥! − 𝑐!𝑡! = ± 𝑥!" − 𝑐!𝑡!"   (𝐼) 
The argument to just choose +, that (I) must remain valid as 𝑣 → 0, is not valid if looking for 
transformations for 𝑣 > 𝑐. 
+ sign  in (I) gives ordinary LT   for standard configuration    
𝑥! = 𝛾 𝑣 𝑥 − 𝑣𝑡                     𝑡! = 𝛾 𝑣 𝑡 − !"

!!
            𝛾 𝑣 = (1− !!

!!
)!! !                𝑣   < 𝑐 

but – sign in (I) gives “Generalised  LT” (GLT) 

𝑥! = 𝛾! 𝑣 𝑥 − 𝑣𝑡       𝑡! = 𝛾! 𝑣 𝑡 − !"
!!

  𝑏𝑢𝑡  𝑤ℎ𝑒𝑟𝑒    𝛾! 𝑣 = (!
!

!!
− 1)!! !     𝑣 > 𝑐 (II) 

   
For 4D  

𝑥! + 𝑦! + 𝑧! − 𝑐!𝑡! = ± 𝑥!" + 𝑦!! + 𝑧!" − 𝑐!𝑡!"          𝐼𝐼𝐼  
the choice of  – sign is not valid if only real valued transformations are allowed according to the 
law of inertia for quadratic forms [13] which states that the signature, the number of positive and 
negative terms must be the same on both sides i.e. +++ -. If allow imaginary number as [10]  – sign 
can be used in (III). Or if we add two parameters or dimensions with negative signs [8].  This seems 
also near the spirit of Minkowski   “.. along a purely mathematical line of thought,  to arrive at 
changed ideas of space and time” [14]. 
 

𝑥! + 𝑦! + 𝑧! − 𝑐!𝑡  ! − 𝑐!𝑡!! − 𝑐!𝑡!! = ± 𝑥!" + 𝑦!! + 𝑧!" − 𝑐!𝑡  !" − 𝑐!𝑡!!" − 𝑐!𝑡!!"          𝐼𝑉  
Signature in VL is +++ ---  and using – sign in HL gives signature --- +++, which yet is same 
signature as only the number of positive and negative terms counts. 
 



+ sign  in (IV) gives a possible GLT  which are uncoupled i.e.  
𝑥! = 𝛾 𝑣 𝑥 − 𝑣𝑡       𝑡! = 𝛾 𝑣 𝑡 − !"

!!
  𝑦! = 𝑦     𝑧! = 𝑧     𝑡!! = 𝑡!      𝑡!! = 𝑡!          𝛾 𝑣 = (1− !!

!!
)!! !  

 
- sign in (IV) gives a possible GLT , which are necessarily coupled  due to the – sign,  

  𝑥! = 𝛾! 𝑣 𝑥 − 𝑣𝑡     𝑡! = 𝛾! 𝑣 𝑡 − !"
!!

  𝑦! = 𝑐𝑡!  𝑧! = 𝑐𝑡!  𝑡!! =
!
!
      𝑡!! =

!
!
    𝛾! 𝑣 = (!

!
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− 1)!! !    

 
As the coupled GLT clearly shows we can not think of superluminal IS just as ordinary IS going 
faster and faster, which is due to the singularity for v=c. Therefore the concept of standard 
configuration is not clear which is also seen in Cole’s more detailed transformations involving 
ambiguity in signs [11].  
As it is shown that with Rindler’s derivation 𝑑𝑠!= ±  𝑑𝑠!" and thus there is a choice but many 
derivations of LT does not give this choice it is interesting to examine why and especially for 
Einstein’s original derivation 1905 [1] and Minkowski’ s Address 1908 [14].  
It will be shown how Einstein and Minkowski use arguments and a diagram which are seemingly 
self-evident but are valid only for 𝑣   < 𝑐 and thus implicitly rule out 𝑣 > 𝑐. 
The problem about dimensionality of the world is still under debate [15]. Petkov has strong 
arguments for that the experimentally verified kinematic effects in relativity is possible only in a 4D 
block universe [16] or actually is possible only in a world of at least four-dimensions. Pavsic [17] 
show that when six-dimensional real spacetime is contracted to 4D transformations must be 
complex and interpret imaginary coordinates as that events observable to one observer is not 
observable to another observer, which is difficult to understand if the world is only 4D. 
Petkov also writes “..- that the flow time is mind-dependent – outlined by Weyl should have been 
examined more rigorously.” and “.. this idea appears to be self contradictory since Weyl assumed 
that consciousness (leaving aside the question of what consciousness itself is) moves in Minkowski 
spacetime where no motion is possible” [16 p. 150].  My intuition is that in a six dimensional 
spacetime with time and two extra “timelike” dimensions both the merits of 4D block universe and 
the fundamental experience of change can co-exist and that 6D spacetime is possibly related also to 
possibilities in QM and to consciousness, which is located in spacetime and not in the brain. [18]. 
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For Imaginary Dimensions and Causal Brane-Worlds

Philip J. Carter
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We address the nature of spacetime by looking squarely at the wave function. First we consider mounting 
evidence in support of the following assertions:

a. The wave function is ontic (an objectively present, holistic entity).
b. The wave function is non-local (holistic over space).
c. The wave function is time-symmetric (holistic over time).

Rather than endlessly debate these statements we ask the rhetorical question: What if these three assertions are 
true? What are the logical consequences?

We begin with time-symmetry, sometimes erroneously called time-reversal. On the basis of retro-causal effects 
demonstrated by delayed-choice experiments along with subsequent time-symmetric approaches to QM we 
deduce that the wave function is extended over time as well as over space. It follows that the wave function is a 
4-dimensional object and hence cannot live in our 3-space. Being 4-dimensional it requires a 4-space, which 
necessarily must coincide with our 3-space, since the 4-dimensional wave function always corresponds to its 
cross-section in the 3-space. Whatever the philosophical implications of such an arrangement, it derives directly 
from the evidence and therefore is admitted for logical scrutiny. 

It follows that our 3+1 spacetime, far from being a block universe, consists of a 3-space passing over the fourth 
dimension of a 4-space. This fourth spatial dimension is not time itself but the spatial precursor to time; it is the 
relative spatial motion that manifests as the phenomenon of time (all dimensions being orthogonal). While our 
3-space exists only in the present moment (tnow), a wave function extending from an emission event at time t1 to 
an absorption event at time t2 continues to evolve holistically in the 4-space while t1 < tnow < t2. (Note that this 
notion of “spatial motion” might be more fundamentally understood as propagation of energy, but the term is 
retained here for logical continuity, since that is the observed effect – time does appear to “flow” after all.) 

The wave function (as currently formulated) has complex phase while being extended in real 3-space, for a total 
of five dimensions to represent the wave function (conventionally considered). So, if the wave function is indeed
ontic, we face directly the problem of imaginary dimensions. Our solution is to simply accept the evidence: the 
fourth dimension of the 4-space is imaginary. When the real part of the wave function’s complex phase is 
understood as one of our regular spatial dimensions the wave function becomes 4-dimensional, with the fourth 
dimension being imaginary. It follows that the imaginary axis of the wave function correlates to time in our 3-
space; thus does time enter QM as a dynamic variable.

Such a space having three real and one imaginary dimensions is familiar to physicists, being known as 
Euclidean spacetime, where the time dimension of Minkowski spacetime is rotated (Wick rotation) into 
“imaginary time” according to τ = it (c = 1). Hence the efficacy of imaginary time in quantum theory: so-called 
Euclidean spacetime is where the four-dimensional wave function finds its home, but with the fourth dimension 
interpreted here as spatial, according to w = it (note that imaginary terms are bolded for logical clarity). For 
present purposes we denote this 4-space Minkowski 4-space, where:

ds2 = dx2 + dy2 + dz2 + dw2     (1)

Since all four dimensions are spatial, the displacement s must also be interpreted as spatial. This is crucial to 
what follows. We introduce the equation for the propagation of the wave function, vph vg = c2 (2), where vg is 
group velocity, interpreted as the velocity of the associated particle, and vph is phase velocity, interpreted as the 



propagation of the wave function itself, with c being the speed of light. 

Since we know that photons adhere to a light cone in Minkowski spacetime, it follows from the propagation 
formula (2) that the wave function itself will adhere to a null cone in Minkowski 4-space. Technically, therefore,
there is no spatial distance, s, between any parts of the photon wave function, no matter how unintuitive this may
appear from our perspective in 3+1 spacetime. This accounts for the “quantum connection” being unattenuated 
(over any distance), discriminating (confined to specific null cones) and faster than light (instantaneous).

While this arrangement accounts for the holistic behaviour of the photon (massless) wave function over both 
space and time, it does not account for the wave function of a massive particle, which according to the 
propagation formula will travel at infinite speed for a particle at rest (which is definitely not on a null cone). 

Since the wave function evolves in the 4-space, this dynamical process requires a time dimension in the 4-space, 
yielding a 4+1 spacetime. We call 4-space time t4, while time in the 3-space we denote t3. Consequently we have 
two reasons for requiring an additional dimension: as a spatial precursor for time in the 4-space, t4; and to 
account for energy and mass. Hence we introduce a second imaginary dimension v, such that:

ds2 = dx2 + dy2 + dz2 + dw2 + dv2   (3)

This implies that a 5-space interpenetrates the 4-space and the 3-space, so in fact the complete wave function is 
5-dimensional. We denote this space Minkowski 5-space, which includes two dynamic imaginary dimensions in 
addition to a real 3-space. We presume that the (massive particle) wave function will always adhere to a null 
geodesic in Minkowski 5-space (s = 0). 

We consider a wave function extending from the origin of Minkowski 5-space over real distance x (y = z = 0). 
We let w = ict and v = iV. For a particle at rest, from (2) we find w = 0. To satisfy the null metric (3) it follows 
that V0 = x. We also note that the wave function frequency relative to the v dimension, hence energy and mass, 
will be inversely proportional to V, such that m/m0 = V0 /V. On this basis, beginning with (2) and (3), we trivially 
derive the mass transformation equation according to Special Relativity. 

Using similar reasoning, accelerating a particle from its rest frame in 3+1 spacetime equates to some reduction in
the V coordinate in that frame, which requires energy, this being the mechanism of inertia. 

We argue on both technical and philosophical grounds that the 5-space marks the end of the dynamical process; 
the w and v dimensions are in motion relative to a higher imaginary dimension u which is itself static, resulting 
in real time t5 in the 5-space. Time in the 4-space therefore originates in the motion of the imaginary dimension 
v in real time t5, so time in the 4-space is imaginary (dt4 = dv/dt5). Time in our 3-space thus derives from the 
motion of the imaginary dimension w in imaginary time t4 (dt3 = dw/dt4) – hence physical time is real.

Here is unveiled a great mystery, the logical underpinnings of the Wick rotation, moving between 3+1 spacetime
and the 4-space. How does motion of the imaginary dimension w become real time t3? In a nutshell, physical 
time is real because time in the 4-space is imaginary. (It follows that time is equivalent to velocity over a higher 
dimension, which is precisely correct – hence the apparent dimensional inconsistencies). 

To briefly review, we erect a spacetime framework supporting quantum non-locality and retro-causality. We 
derive a mechanism underpinning time and explain the Wick rotation. We derive the mass transformation 
equation according to Special Relativity on the basis of both quantum and relativistic principles. Hence do 
Special Relativity and the wave function meld in the 5-space, becoming aspects of an overarching framework, 
with General Relativity looming in the shadows. Furthermore, we propose a mechanism by which Kaluza’s 4+1 
Einstein-Maxwell theory becomes directly applicable to the 5-space. Thus we submit that the essential logical 
elements are in place supporting the formulation of a consistent quantum theory of gravity. 
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A Ridiculous Theory of Dark Energy 
 

What does it mean to say that the entire universe is expanding? The whole 
universe can only be getting bigger, in any real sense, relative to some other reference 
frame. Expansion is not a meaningful concept without a reference frame relative to which 
the expansion occurs. It is common for nonscientists to immediately recognize this 
problem when they ask, “What is the universe expanding into?”1 

At the most basic level, there are two theoretical models of the universe: infinite 
and finite.2 Both models struggle, in their own way, to explain the universe’s expansion. 

In infinite models of the universe, the expansion we observe only applies to our 
portion of infinity. Within this infinite space, there might be an endless profusion of other 
universes, all of them expanding relative to an infinite reference frame.3 The question, 
“What is the universe expanding into?” is therefore not answered so much as it is 
excused. The problem of the whole universe getting bigger is absolved of its 
problematical nature. Even though the universe is expanding, it is not getting bigger in 
any real sense, because the universe is infinite. 

Finite models of universe, on the other hand, immediately face the problem of an 
inconceivable edge of the universe itself. Scientists typically address this problem by 
theorizing a fourth spatial dimension. The analogy of a sphere is often used. A sphere is a 
three-dimensional shape whose two-dimensional surface has no edge. Finite models of 
the universe propose that the entire known universe is like the surface of a sphere. The 
three-dimensional universe would have no edge if it formed another type of sphere in a 
fourth dimension. As the three-dimensional universe expands, its four-dimensional shape 
grows in volume in the fourth dimension.4 

But consider what it means to say that the entire universe has shape. The whole 
universe can only have shape, in any real sense, relative to some other reference frame. 
Shape is not a meaningful concept without a reference frame relative to which the shape 
takes its form.5 If the universe is shaped like a sphere relative to the fourth dimension, is 
the fourth dimension infinite, or does the fourth dimension itself have an edge? 
Ultimately, finite models of the universe can only extend the problem of an edge to 
another dimension. The question, “What is the universe expanding into?” is therefore 
only answered with a temporary stopgap. Finite models of the universe are perpetually 
undermined by an infinite regress in perspective. 

At the most basic level, the fact that the universe is expanding destabilizes both 
infinite and finite models of the universe. It is difficult to overstate the crisis in our 
theoretical picture of reality. Infinite models can only excuse the universe’s expansion as 
a provincial phenomenon, while finite models can only push away the inconceivable edge 
of the universe to another dimension. If a scientist chooses to interpret the expansion of 
the universe as a simple fact—in other words, if the whole universe is actually getting 
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bigger—it becomes impossible to conceptualize how the universe could be either infinite 
or finite. 

This crisis in the structure of our theories is occurring at the most basic level of 
analysis. The only way out, therefore, is to reconsider the basic logic of an expanding 
universe. The fact that the universe is expanding is actually only half of the fact in 
question. The other half of the fact—the reference frame relative to which the universe 
expands—must also be accounted for in order to arrive at any picture of reality that is 
logically coherent. In short, the fact that the universe is expanding compels us toward a 
concept of that which is not the universe; the fact that the universe is expanding implies 
the existence of an entirely different aspect of reality. 
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[5] Moreover, to claim that the entire universe has a shape is to claim that shape is a higher category 
than reality itself. And to make the further claim that there is no reference frame relative to 
which the shape of the universe takes its form is to claim that the shape of the universe is an 
absolute reality, a mysterious end of all inquiry. It is to claim, in effect, that God is a shape—
a tragicomical end to this system of thought. 
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